
Chapter 1

Noisy data

Noise comes in two distinct flavors. First is erratic bursty noise which is difficult to fit into a
statistical model. It bursts out of our simple models. To handle this noise we need “robust”
estimation procedures which we consider first.

Next is noise that has a characteristic spectrum, temporal spectrum, spatial spectrum, or
dip spectrum. Low frequency drift of the mean value of a signal is often called secular noise.

In real life, we need to handle both bursty noise and secular noise at the same time.

1.1 MEANS, MEDIANS, PERCENTILES AND MODES

Means, medians, andmodes are different averages. Given some data valuesdi for i =
1,2, ...,N, the arithmetic mean valuem2 is

m2 =
1

N

N∑
i=1

di (1.1)

It is useful to notice that thism2 is the solution of the simple fitting problemdi ≈m2 or d≈m2,
in other words, minm2

∑
i (m2−di)2 or

0 =
d

dm2

N∑
i=1

(m2−di)
2 (1.2)

The median of thedi values is found when the values are sorted from smallest to largest
and then the value in the middle is selected. The median is delightfully well behaved even if
some of your data values happen to be near infinity. Analytically, the median arises from the
optimization

min
m1

N∑
i=1

|m1−di | (1.3)

1

2 CHAPTER 1. NOISY DATA

To see why, notice that the derivative of the absolute value function is the signum function,

sgn(x) = lim
ε−→0

x

|x|+ ε
(1.4)

The gradient vanishes at the minimum.

0 =
d

dm1

N∑
i=1

|m1−di | (1.5)

The derivative is easy and the result is a sum of sgn() functions,

0 =

N∑
i=1

sgn(m1−di) (1.6)

In other words it is a sum of plus and minus ones. If the sum is to vanish, the number of plus
ones must equal the number of minus ones. Thusm1 is greater than half the data values and
less than the other half, which is the definition of a median. The mean is said to minimize the
L2 norm of the residual and the median is said to minimize itsL1 norm.

Before this chapter, our model building was all based on theL2 norm. The median is
clearly a good idea for data containing large bursts of noise, but the median is a single value
while geophysical models are made from many unknown elements. TheL1 norm offers us the
new opportunity to build multiparameter models where the data includes huge bursts of noise.

Yet another average is the “mode,” which is the most commonly occurring value. For
example, in the number sequence (1,2,3,5,5) the mode is 5 because it occurs the most times.
Mathematically, the mode minimizes the zero norm of the residual, namelyL0 = |m0−di |

0.
To see why, notice that when we raise a residual to the zero power, the result is 0 ifdi =m0,
and it is 1 ifdi 6=m0. Thus, theL0 sum of the residuals is the total number of residuals less
those for whichdi matchesm0. The minimum ofL0(m) is the modem=m0. The zero power
function is nondifferentiable at the place of interest so we do not look at the gradient.

L2(m) andL1(m) are convex functions ofm (positive second derivative for allm), and this
fact leads to the triangle inequalitiesL p(a)+ L p(b) ≥ L p(a+b) for p≥ 1 and assures slopes
lead to a unique (ifp > 1) bottom. Because there is no triangle inequality forL0, it should not
be called a “norm” but a “measure.”

Because most values are at the mode, the mode is where a probability function is max-
imum. The mode occurs with the maximum likelihood. It is awkward to contemplate the
mode for floating-point values where the probability is minuscule (and irrelevant) that any two
values are identical. A more natural concept is to think of the mode as the bin containing the
most values.

1.1.1 Percentiles and Hoare’s algorithm

The median is the 50-thpercentile. After residuals are ordered from smallest to largest, the
90-th percentile is the value with 10% of the values above and 90% below. At SEP the default

1.1. MEANS, MEDIANS, PERCENTILES AND MODES 3

1 2 3 4 5 6

10

20

30

40

50

60

1 2 3 4 5 6

2

4

6

8

10

12

14

1 2 3 4 5 6

1

2

3

4

5

6

7

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

Figure 1.1: Mean, median, and mode. The coordinate ism. Top is theL2, L1, andL1/10≈ L0

measures ofm−1. Bottom is the same measures of the data set (1,1,2,3,5).noiz-norms
[CR]

value for clipping plots of field data is at the 98th percentile. In other words, magnitudes above
the 98-th percentile are plotted at the 98-th percentile. Any percentile is most easily defined if
the population of valuesai , for i = 1,2, ...,n has been sorted into order so thatai ≤ ai+1 for all
i . Then the 90-th percentile isak wherek= (90n)/100.

We can save much work by usingHoare’s algorithm which does not fully order the whole
list, only enough of it to find the desired quantile. Hoare’s algorithm is an outstanding example
of the power of a recursive function, a function that calls itself. The main idea is this: We start
by selecting a random value taken from the list of numbers. Then we split the list into two
piles, one pile all values greater than the selected, the other pile all less. The quantile is in one
of these piles, and by looking at their sizes, we know which one. So we repeat the process on
that pile and ignore the other other one. Eventually the pile size reduces to one, and we have
the answer.

In Fortran 77 or C it would be natural to split the list into two piles as follows:

We divide the list of numbers into two groups, a group belowak and another
group aboveak. This reordering can be done “in place.” Start one pointer at the
top of the list and another at the bottom. Grab an arbitrary value from the list (such
as the current value ofak). March the two pointers towards each other until you
have an upper value out of order withak and a lower value out of order withak.
Swap the upper and lower value. Continue until the pointers merge somewhere
midlist. Now you have divided the list into two sublists, one above your (random)
valueak and the other below.

4 CHAPTER 1. NOISY DATA

Fortran 90 has some higher level intrinsic vector functions that simplify matters. Whena is a
vector andak is a value,a>ak is a vector of logical values that are true for each component
that is larger thanak . The integer count of how many components ofa are larger thanak is
given by the Fortran intrinsic functioncount(a>ak) . A vector containing only values less
thanak is given by the Fortran intrinsic functionpack(a,a<ak) .

Theoretically about 2n comparisons are expected to find the median of a list ofn values.
The code below (from Sergey Fomel) for this task isquantile .

module quantile_mod { # quantile finder. median = quantile(size(a)/2, a)
contains

recursive function quantile(k, a) result(value) {
integer, intent (in) :: k # position in array
real, dimension (:), intent (in) :: a
real :: value # output value of quantile
integer :: j
real :: ak
ak = a(k)
j = count(a < ak) # how many a(:) < ak
if(j >= k)

value = quantile(k, pack(a, a < ak))
else {

j = count(a > ak) + k - size(a)
if(j > 0)

value = quantile(j, pack(a, a > ak))
else

value = ak
}

}
}

An interesting application of medians is eliminatingnoise spikesthrough the use of a
running median. Arunning median is a median computed in a moving window. Figure
1.2 shows depth-sounding data from the Sea of Galilee before and after a running median of
5 points was applied. The data as I received it is 132044 triples; i.e., (xi , yi ,zi) wherei is
measured along the vessel’s track. In Figure 1.2 the depth datazi appears as one long track
although the surveying was done in several episodes that do not always continue the same
track. For Figure 1.2 I first abandoned the last 2044 of the 132044 triples and all the (xi , yi)-
pairs. Then I broke the remaining long signal into the 26 strips you see in the figure. Typically
the depth is a “U”-shaped function as the vessel crosses the lake. You will notice that many
spikes are missing on the bottom plot. For more about these tracks, see Figure 1.12.

1.1.2 The weighted mean

Theweighted meanm is

m =

∑N
i=1 w2

i di∑N
i=1 w2

i

(1.7)

1.1. MEANS, MEDIANS, PERCENTILES AND MODES 5

Figure 1.2: Depth of the Sea of Galilee along the vessel’s track.noiz-median590[ER,M]

6 CHAPTER 1. NOISY DATA

wherew2
i > 0 is the squared weighting function. This is the solution to theL2 fitting problem

0≈ wi (m−di); in other words,

0 =
d

dm

N∑
i=1

[wi (m−di)]
2 (1.8)

1.1.3 Weighted L.S. conjugate-direction template

The pseudocode for minimizing theweightedresidual0 ≈ r = W(Fm− d) by conjugate-
direction method, is effectively like that for the unweighted method except that the initial
residual is weighted and the operatorF has the premultiplierW. Naturally, the adjoint oper-
atorF′ has the postmultiplierW′. In some applications the weighting operatorW is simply a
weighting function or diagonal matrix (so thenW =W′) and in other applications, the weight-
ing operatorW may be an operator, like the derivative along a data recording trajectory (so
thenW 6=W′).

r ←− W(Fm−d)
iterate {

1m ←− F′W′ r
1r ←− WF 1m
(m,r) ←− cgstep(m,r ,1m,1r)
}

1.1.4 Multivariate L1 estimation by iterated reweighting

The easiest method of model fitting is linear least squares. This means minimizing the sums
of squares of residuals (L2). On the other hand, we often encounter huge noises and it is much
safer to minimize the sums of absolute values of residuals (L1). (The problem withL0 is that
there are multiple minima, so the gradient is not a sensible way to seek the deepest).

There exist specialized techniques for handlingL1 multivariate fitting problems. They
should work better than the simple iterative reweighting outlined here.

A penalty function that ranges fromL2 to L1, depending on the constantr̄ is

E(r) =

∑
i

(√
1+ r 2

i /r̄ 2−1

)
(1.9)

Wherer i /r̄ is small, the terms in the sum amount tor 2
i /2r̄ 2 and wherer 2

i /r̄ 2 is large, the terms
in the sum amount to|r i /r̄ |. We define the residual as

r i =

∑
j

Fi j mj −di (1.10)

1.1. MEANS, MEDIANS, PERCENTILES AND MODES 7

We will need

∂r i

∂mk
=

∑
j

Fi j δjk = Fik (1.11)

where we briefly used the notation thatδjk is 1 when j = k and zero otherwise. Now, to let us
find the descent direction1m, we will compute thek-th componentgk of the gradientg. We
have

gk =
∂E

∂mk
=

∑
i

1√
1+ r 2

i /r̄ 2

r i

r̄ 2

∂r i

∂mk
(1.12)

g = 1m = F′ diag

 1√
1+ r 2

i /r̄ 2

 r (1.13)

where we have use the notationdiag() to designate a diagonal matrix with its argument dis-
tributed along the diagonal.

Continuing, we notice that the new weighting of residuals has nothing to do with the linear
relation between model perturbation and residual perturbation; that is, we retain the familiar
relations,r = Fm−d and1r = F1m.

In practice we have the question of how to chooser̄ . I suggest that̄r be proportional to
median(|r i |) or some other percentile.

1.1.5 Nonlinear L.S. conjugate-direction template

Nonlinear optimization arises from two causes:

1. Nonlinear physics. The operator depends upon the solution being attained.

2. Nonlinear statistics. We need robust estimators like theL1 norm.

The computing template below is useful in both cases. It is almost the same as the template for
weighted linear least-squares except that the residual is recomputed at each iteration. Starting
from the usual weighted least-squares template we simply move the iteration statement a bit
earlier.

iterate {
r ←− Fm−d
W ←− diag[w(r)]
r ←− Wr
1m ←− F′W′ r
1r ←− WF 1m
(m,r) ←− cgstep(m,r ,1m,1r)
}

8 CHAPTER 1. NOISY DATA

wherediag[w(r)] is whatever weighting function we choose along the diagonal of a diagonal
matrix.

Now let us see how the weighting functions relate to robust estimation: Notice in the code
template thatW is applied twice in the definition of1m. ThusW is the square root of the
diagonal operator in equation (1.13).

W = diag

 1√√
1+ r 2

i /r̄ 2

 (1.14)

Moduleweight_solver on this page implements the computational template above. In
addition to the usual set of arguments from thesolver() subroutine on page ??, it accepts a
user-defined function (parameterwght) for computing residual weights. Parametersnmemand
nfreq control the restarting schedule of the iterative scheme.

module weight_solver {
logical, parameter, private :: T = .true., F = .false.

contains
subroutine solver(oper, solv, x, dat, niter, nmem, nfreq, wght) {

interface {
integer function wght(res, w) {

real, dimension (:) :: res, w
}

integer function oper(adj, add, x, dat) {
logical, intent (in) :: adj, add
real, dimension (:) :: x, dat
}

integer function solv(forget, x, g, rr, gg) {
logical :: forget
real, dimension (:) :: x, g, rr, gg
}

}
real, dimension (:), intent (in) :: dat # data
real, dimension (:), intent (out) :: x # solution
integer, intent (in) :: niter, nmem, nfreq # iterations
real, dimension (size (x)) :: g # gradient
real, dimension (size (dat)) :: rr, gg, wt # res, CG, weight
integer :: i, stat
logical :: forget
rr = -dat; x = 0.; wt = 1.; forget = F # initialize
do i = 1, niter {

forget = (i > nmem) # restart
if(forget) stat = wght(rr, wt) # compute weighting
rr = rr * wt # rr = W (Fx - d)
stat = oper(T, F, g, wt*rr) # g = F’ W’ rr
stat = oper(F, F, g, gg) # gg = Fg
gg = gg * wt # gg = W F g
if(forget) forget = (mod(i, nfreq) == 0) # periodic restart
stat = solv(forget, x, g, rr, gg) # step in x and rr
rr = - dat
stat = oper(F, T, x, rr) # rr = Fx - d

1.1. MEANS, MEDIANS, PERCENTILES AND MODES 9

}
}

}

We can ask whethercgstep() , which was not designed with nonlinear least-squares in
mind, is doing the right thing with the weighting function. First, we know we are doing
weighted linear least-squares correctly. Then we recall that on the first iteration, the conjugate-
directions technique reduces to steepest descent, which amounts to a calculation of the scale
factorα with

α = −
1r · r

1r ·1r
(1.15)

Of course,cgstep() knows nothing about the weighting function, but notice that the iteration
loop above nicely inserts the weighting function both inr and in1r , as required by (1.15).

Experience shows that difficulties arise when the weighting function varies rapidly from
one iteration to the next. Naturally, the conjugate-direction method, which remembers the
previous iteration, will have an inappropriate memory if the weighting function changes too
rapidly. A practical approach is to be sure the changes in the weighting function are slowly
variable.

1.1.6 Minimizing the Cauchy function

A good trick (I discovered accidentally) is to use the weight

W = diag

 1√
1+ r 2

i /r̄ 2

 (1.16)

Sergey Fomel points out that this weight arises from minimizing theCauchy function:

E(r) =

∑
i

log(1+ r 2
i /r̄ 2) (1.17)

A plot of this function is found in Figure 1.3.

Because the second derivative is not positive everywhere, the Cauchy function introduces
the possibility of multiple solutions, but because of the good results we see in Figure 1.4, you
might like to try it anyway. Perhaps the reason it seems to work so well is that it uses mostly
residuals of “average size,” not the big ones or the small ones. This happens because1m is
made fromF′ and the components ofW2r which are a functionr i /(1+r 2

i /r̄ 2) that is maximum
for those residuals near̄r .

Module irls on this page supplies two useful weighting functions that can be inter-
changed as arguments to the reweighted scheme on the preceding page.

10 CHAPTER 1. NOISY DATA

1 2 3 4 5 6

1

2

3

4

5

6

7

0.5 1 1.5 2

0.05

0.1

0.15

0.2

1 2 3 4 5 6

2

4

6

8

10

12

0.5 1 1.5 2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6

5

10

15

20

25

0.5 1 1.5 2

0.5

1

1.5

2

2.5

3

Figure 1.3: The coordinate ism. Top is Cauchy measures ofm− 1. Bottom is the same
measures of the data set (1,1,2,3,5). Left, center, and right are forr̄ = (2,1, .2). noiz-cauchy
[CR]

module irls {
use quantile_mod

contains
integer function l1 (res, weight) {

real, dimension (:) :: res, weight
real :: rbar
rbar = quantile(int(0.5*size(res)), abs (res)) # median
weight = 1. / sqrt(sqrt (1. + (res/rbar)**2)); l1 = 0
}

integer function cauchy (res, weight) {
real, dimension (:) :: res, weight
real :: rbar
rbar = quantile(int(0.5*size(res)), abs (res)) # median
weight = 1. / sqrt (1. + (res/rbar)**2); cauchy = 0
}

}

1.2 NOISE BURSTS

Sometimes noise comes in isolatedspikes. Sometimes it comes inbursts or bunches (like
grapes). Figure 1.4 is a simple one-dimensional example of a periodic signal plus spikes and
bursts. Three processes are applied to this data,despikeand two flavors ofdeburst. Here we
will examine the processes used. (For even better results, see Figure 1.6.)

1.2. NOISE BURSTS 11

Figure 1.4: Top is synthetic data with noise spikes and bursts. (Most bursts are a hundred
times larger than shown.) Next is after running medians. Bottom is after the two processes
described here.noiz-burst90[ER]

1.2.1 De-spiking with median smoothing

The easiest method to remove spikes is to pass a moving window across the data and output
the median value in the window. This method of despiking was done in Figure 1.4, which
shows a problem of the method: The window is not long enough to clean the long bursts, but
it is already so long that it distorts the signal by flattening its peaks. The window size really
should not be chosen in advance but should depend upon by what is encountered on the data.
This I have not done because the long-burst problem is solved by another method described
next.

1.2.2 De-bursting

Most signals are smooth, but running medians assume they have no curvature. An alternate
expression of this assumption is that the signal has minimal curvature 0≈ hi+1−2hi +hi−1;
in other words,0≈ ∇2h. Thus we propose to create the cleaned-up datah from the observed
datad with the fitting problem

0 ≈ W(h−d)
0 ≈ ε ∇2h

(1.18)

whereW is a diagonal matrix with weights sprinkled along the diagonal, and where∇
2 is a

matrix with a roughener like (1,−2,1) distributed along the diagonal. This is shown in Figure
1.4 with ε = 1. Experience showed similar performances for 0≈ ∇h and 0≈ ∇2h. Better
results, however, will be found later in Figure 1.6, where the∇2 operator is replaced by an
operator designed to predict this very predictable signal.

12 CHAPTER 1. NOISY DATA

1.3 MEDIAN BINNING

We usually add data into bins. When the data has erratic noise, we might prefer to take the
median of the values in each bin. Subroutinemedianbin2() (in the library, but not listed
here) performs the chore. It is a little tricky because we first need to find out how many data
values go into each bin, then we must allocate that space and copy each data value from its
track location to its bin location. Finally we take the median in the bin. A small annoyance
with medians is that when bins have an even number of points, like two, there no middle. To
handle this problem, subroutinemedianbin2() uses the average of the middle two points.

A useful byproduct of the calculation is the residual: For each data point its bin median is
subtracted. The residual can be used to remove suspicious points before any traditional least-
squares analysis is made. An overall strategy could be this: First a coarse binning with many
points per bin, to identify suspicious data values, which are set aside. Then a sophisticated
least squares analysis leading to a high-resolution depth model. If our search target is small,
recalculate the residual with the high-resolution model and reexamine the suspicious data
values.

Figure 1.5: Galilee water depth binned and roughened. Left is binning with the mean, right
with the median. noiz-medbin90[ER,M]

Figure 1.5 compares the water depth in the Sea of Galilee with and without median bin-
ning. The difference does not seem great here but it is more significant than it looks. Later
processing will distinguish between empty bins (containing an exact zero) and bins with small
values in them. Because of the way the depth sounder works, it often records an erroneously

1.4. ROW NORMALIZED PEF 13

near-zero depth. This will make a mess of our later processing (missing data fill) unless we
cast out those data values. This was done by median binning in Figure 1.5 but the change is
disguised by the many empty bins.

Median binning is a useful tool, but where bins are so small that they hold only one or two
points, there the median for the bin is the same as the usual arithmetic average.

1.4 ROW NORMALIZED PEF

We often run intobursty noise. This can overwhelm the estimate of a prediction-error filter.
To overcome this problem we can use a weighting function. The weight for each row in fitting
matrix (??) is adjusted so that each row has about the same contribution as each other row. A
first idea is that the weight for then-th row would be the inverse of the sum of the absolute
values of the row. This is easy to compute: First make a vector the size of the PEFa but with
each element unity. Second, take a copy of the signal vectory but with the absolute value
of each component. Third, convolve the two. The convolution of the ones with the absolute
values could be the inverse of the weighting function we seek. However, any time we are
forming an inverse we need to think about the possibility of dividing by zero, how it could
arise, and how divisions by “near zero” could be even worse (because a poor result is not
immediately recognized). Perhaps we should use something betweenL1 andL2 or Cauchy. In
any case, we must choose a scaling parameter that separates “average” rows from unusually
large ones. For this choice in subroutinernpef1() , I chose the median.

1.5 DEBURST

We can use the same technique to throw out fitting equations from defective data that we
use for missing data. Recall the theory and discussion leading up to Figure 1.4. There we
identified defective data by its lack of continuity. We used the fitting equations 0≈ wi (yi+1−

2yi + yi−1) where the weightswi were chosen to be approximately the inverse to the residual
(yi+1−2yi + yi−1) itself.

Here we will first use the second derivative (Laplacian in 1-D) to throw out bad points,
while we determine the PEF. Having the PEF, we use it to fill in the missing data.

module pefest { # Estimate a PEF avoiding zeros and bursty noise on input.
use quantile_mod
use helicon
use misinput
use pef

contains
subroutine pefest1(niter, yy, aa) {

integer, intent(in) :: niter
real, dimension(:), pointer :: yy
type(filter) :: aa
real, dimension(size(yy)) :: rr

14 CHAPTER 1. NOISY DATA

real :: rbar
integer :: stat
call helicon_init(aa) # starting guess
stat = helicon_lop(.false., .false., yy, rr)
rbar = quantile(size(yy)/3, abs(rr)) # rbar=(r safe below rbar)
where(aa%mis) yy = 0.
call find_mask((yy /= 0. .and. abs(rr) < 5 * rbar), aa)
call find_pef(yy, aa, niter)

}
}

The result of this “PEF-deburst” processing is shown in Figure 1.6.

Figure 1.6: Top is synthetic data with noise spikes and bursts. (Some bursts are fifty times
larger than shown.) Next is after running medians. Next is Laplacian filter Cauchy deburst
processing. Last is PEF-deburst processing.noiz-pefdeburst90[ER]

Given the PEF that comes out ofpefest1() 1, subroutinefixbad1() below convolves it
with the data and looks for anomalous large outputs. For each that is found, the input data is
declared defective and set to zero. Then subroutinemis1() on page ?? is invoked to replace
the zeroed values by reasonable ones.

module fixbad { # Given a PEF, find bad data and restore it.
use mis2
use helicon
use quantile_mod

contains
subroutine fixbad1 (niter, aa, yy) {

integer, intent (in) :: niter

1If you are losing track of subroutines defined earlier, look at the top of the module to see what other
modules ituse s. Then look in the index to find page numbers of those modules.

1.6. TWO 1-D PEFS VERSUS ONE 2-D PEF 15

type(filter), intent (in) :: aa
real, dimension (:) :: yy
real, dimension (size (yy)) :: rr
logical, dimension (size (yy)) :: known
integer :: stat
call helicon_init(aa)
stat = helicon_lop (.false., .false., yy, rr); rr = abs (rr)
known = (yy > 0.) .and. (rr < 4. * quantile(size(rr)/2, rr))
call mis1 (niter, yy, aa, known, .true.)

}
}

1.5.1 Potential seismic applications of two-stage infill

Two-stage data infill has many applications that I have hardly begun to investigate.

Shot continuation is an obvious task for a data-cube extrapolation program. There are
two applications of shot-continuation. First is the obvious one of repairing holes in data in
an unobtrusive way. Second is to cooperate with reflection tomographic studies such as that
proposed by MatthiasSchwab.

Offset continuation is a well-developed topic because of its close link withdip moveout
(DMO). DMO is heavily used in the industry. I do not know how the data-cube extrapolation
code I am designing here would fit into DMO and stacking, but because these are such impor-
tant processes, the appearance of a fundamentally new tool like this should be of interest. It is
curious that the DMO operator is traditionally derived from theory, and the theory requires the
unknown velocity function of depth, whereas here I propose estimating the offset continuation
operator directly from the data itself, without the need of a velocity model.

Obviously, one application is to extrapolate off the sides of aconstant-offset section. This
would reduce migration semicircles at the survey’s ends.

Another application is to extrapolate off thecable endsof a common-midpoint gather or a
common shot point gather. This could enhance the prediction of multiple reflections or reduce
artifacts in velocity analysis.

Obviously, the methodology and code in this chapter is easily extendable to four dimen-
sions (prestack 3-D data).

1.6 TWO 1-D PEFS VERSUS ONE 2-D PEF

Here we look at the difference between using two 1-D PEFs, and one 2-D PEF. Figure 1.7
shows an example of sparse tracks; it is not realistic in the upper-left corner (where it will be
used for testing), in a quarter-circular disk where the data covers the model densely. Such a
dense region is ideal for determining the 2-D PEF. Indeed, we cannot determine a 2-D PEF
from the sparse data lines, because at any place you put the filter (unless there are enough

16 CHAPTER 1. NOISY DATA

adjacent data lines), unknown filter coefficients will multiply missing data. So every fitting
goal is nonlinear and hence abandoned by the algorithm.

Figure 1.7: Synthetic wavefield (left) and as observed over survey lines (right). The wavefield
is a superposition of waves from three directions.noiz-duelin90[ER]

The set of test data shown in Figure 1.7 is a superposition of three functions like plane
waves. One plane wave looks like low-frequency horizontal layers. Notice that the various
layers vary in strength with depth. The second wave is dipping about 30◦ down to the right
and its waveform is perfectly sinusoidal. The third wave dips down 45◦ to the left and its
waveform is bandpassed random noise like the horizontal beds. These waves will be handled
differently by different processing schemes, so I hope you can identify all three. If you have
difficulty, view the figure at a grazing angle from various directions.

Later we will make use of the dense data region, but first letU be the east-west PE operator
and V be the north-south operator and let the signal or image beh = h(x, y). The fitting
residuals are

0 ≈ (I −J)(h−d)
0 ≈ U h
0 ≈ V h

(1.19)

whered is data (or binned data) and (I −J) masks the map onto the data.

Figure 1.8 shows the result of using a single one-dimensional PEF along either the vertical
or the horizontal axis.

Figure 1.9 compares the use of a pair of 1-D PEFs versus a single 2-D PEF (which needs
the “cheat” corner in Figure 1.7. Studying Figure 1.9 we conclude (what theory predicts) that

• These waves are predictable with a pair of 1-D filters:

1.6. TWO 1-D PEFS VERSUS ONE 2-D PEF 17

Figure 1.8: Interpolation by 1-D PEF along the vertical axis (left) and along the horizontal
axis (right). noiz-dueleither90[ER]

Figure 1.9: Data infilled by a pair of 1-D PEFs (left) and by a single 2-D PEF (right).
noiz-duelversus90[ER,M]

18 CHAPTER 1. NOISY DATA

– Horizontal (or vertical) plane-wave with random waveform

– Dipping plane-wave with a sinusoidal waveform

• These waves are predictable with a single 2-D filter:

– both of the above

– Dipping plane-wave with a random waveform

1.7 ELIMINATING SHIP TRACKS IN GALILEE

All Galilee imaging formulations until now have produced images with survey-vessel tracks
in them. We do not want those tracks. Allow me a hypothetical explanation for the tracks.
Perhaps the level of the lake went up or down because of rain or drought during the months of
the survey. Perhaps some days the vessel was more heavily loaded and the sensor was deeper
in the water. We would not have this difficulty if instead of measuring depth, we measured
water bottom slope, say by subtracting two successive depth measurements. This gives a new
problem, that of finding the map of the topography of the water bottom from measurements of
its slopes along ships’ tracks. We can express this as the fitting goal

0≈
d

dt
(h−d) (1.20)

whered/dt is the derivative along the data track. The operatord/dt is applied to both the
observed depth and the theoretical depth. The track derivative follows the survey ship and if
the ship goes in circles the track derivative does too. We represent the derivative by the (1,−1)
operator. There is a Fourier space in which this operator is simply a weighting function that
weights the zero spatial frequency to zero value.

To eliminate vessel tracks in the map, we apply along the track a derivative to both the
model and the data.

A beginner might believe that if the ship changes speed or stops while the depth sounder
continues running, that we should divide the depth differences by the distance traveled. We
could try that, but it might be neither necessary nor appropriate because the (1,−1) opera-
tor is simply a weighting function for a statistical estimation problem, and weighting func-
tions do not need to be known to great accuracy. Perhaps the best weighting function is the
prediction-error filter determined from the residual itself. Without further ado, we write the
noise-weighting operator asA and consider it to be eitherd/dt or a PEF. Notice that we en-
counter PEFs in both data space and model space. We have been usingU andV to denote
PEFs on the final map, and now in the data space we have the PEFA on the residual.

1.7. ELIMINATING SHIP TRACKS IN GALILEE 19

1.7.1 Using a PEF on the Galilee residual

For simplicity, we begin with a simple gradient for the PEF of the map. We have

0 ≈ A(Bh−d)
0 ≈ ε∇h

(1.21)

This is our first fitting system that involves all the raw data. Previous ones have involved the
data only after binning. Dealing with all the raw data, we can expect even more difficulty
with impulsive and erratic noises. The way to handle such noise is via weighting functions.
Including such a weighting function gives us the map-fitting goals,

0 ≈ WA (Bh−d)
0 ≈ ε∇h

(1.22)

Results are in Figure 1.10. It is pleasing to see the ship’s tracks gone at last.

Figure 1.10: Gradient of the Galilee map from (1.22).noiz-potato [ER,M]

1.7.2 PEFs on both model space and residual space

Finally, let us use PEFs in both data space and map space.

0 ≈ WA (Bh−d)
0 ≈ εUh
0 ≈ εVh

(1.23)

20 CHAPTER 1. NOISY DATA

I omit the display of my subroutine for the goals (1.23) because the code is so similar to
potato() . (Its name ispear() and it is in the library.)

A disadvantage of the previous result in Figure 1.10 is that for the horizontal gradient, the
figure is dark on one side and light on the other, and likewise for the vertical gradient. Looking
at the result in Figure 1.11 we see that this is no longer true. Thus although the topographic
PEFs look similar to a gradient, the difference is substantial.

Figure 1.11: Galilee residuals estimated by (1.23).noiz-pear [ER,M]

Subjectively comparing Figures 1.10 and 1.11 our preference depends partly on what we
are looking at and partly on whether we view the maps on paper or a computer screen. Having
worked on this so long, I am disappointed that most of my 1997 readers are limited to the
paper. Another small irritation is that we have two images for each process when we might
prefer one. We could have a single image if we go to a single model roughener.

I have wondered whether any significant improvements might result from using linear
interpolationL instead of simple binningB. The initialization arguments are identical in
operatorlint2 on page 22 and operatorbin2 on page ??, so they are “plug compatible” and
we could easily experiment.

1.7. ELIMINATING SHIP TRACKS IN GALILEE 21

1.7.3 Regridding

Because of the weightingW, which is a function of the residual itself, the fitting problems
(1.22) and (1.23) are nonlinear. Thus a nonlinear solver is required. Unlike linear solvers,
nonlinear solvers need a good starting approximation so they do not land in a false minimum.
(Linear solvers benefit too by converging more rapidly when started from a good approxima-
tion.) I chose the starting solutionh0 beginning from median binning on a coarse mesh. Then
I refined the mesh with linear interpolation.

The regridding chore reoccurs on many occasions so I present reusable code. When a
continuum is being mapped to a mesh, it is best to allocate to each mesh point an equal area
on the continuum. Thus we take an equal interval between each point, and a half an interval
beyond the end points. Givenn points, there aren-1 intervals between them, so we have

min = o - d/2

max = o + d/2 + (n-1)*d

which may be back solved to

d = (max-min)/n

o = (min*(n-.5) + max/2)/n

which is a memorable result ford and a less memorable one foro. With these not-quite-trivial
results, we can invoke the linear interpolation operatorlint2 . It is designed for data points
at irregular locations, but we can use it for regular locations too. Operatorrefine2 defines
pseudoirregular coordinates for the bin centers on the fine mesh and then invokeslint2 to
carry data values from the coarse regular mesh to the pseudoirregular finer mesh. Upon exiting
from refine2 , the data space (normally irregular) is a model space (always regular) on the
finer mesh.

module refine2 { # Refine mesh.
Input mm(m1,m2) is coarse. Output dd(n1,n2) linear interpolated.
#
use lint2
real, dimension(:, :), pointer, private :: xy
#% _init(co1,cd1,co2,cd2, m1,m2, fo1,fd1,fo2,fd2, n1,n2)

integer, intent(in) :: m1,m2, n1,n2
real, intent(in) :: co1,cd1,co2,cd2 # coarse grid
real, intent(out) :: fo1,fd1,fo2,fd2 # fine grid
integer :: i1,i2, id
real :: xmin,xmax, ymin,ymax, x,y
allocate (xy(n1*n2, 2))
xmin = co1-cd1/2; xmax = co1 +cd1*(m1-1) +cd1/2 # Great formula!
ymin = co2-cd2/2; ymax = co2 +cd2*(m2-1) +cd2/2
fd1= (xmax-xmin)/n1; fo1= (xmin*(n1-.5) + xmax/2)/n1 # Great formula!
fd2= (ymax-ymin)/n2; fo2= (ymin*(n2-.5) + ymax/2)/n2
do i2=1,n2 { y = fo2 + fd2*(i2-1)
do i1=1,n1 { x = fo1 + fd1*(i1-1)

22 CHAPTER 1. NOISY DATA

id = i1+n1*(i2-1)
xy(id, :) = (/ x, y /)
}}

call lint2_init(m1,m2, co1,cd1, co2,cd2, xy)
#% _lop (mm, dd)

integer stat1
stat1 = lint2_lop(adj, .true., mm, dd)

#% _close
deallocate (xy)
}

Finally, here is the 2-D linear interpolation operatorlint2 , which is a trivial extension of the
1-D versionlint1 on page ??.

module lint2 { # (Bi)Linear interpolation in 2-
D
integer :: m1,m2
real :: o1,d1, o2,d2
real, dimension (:,:), pointer :: xy
#% _init (m1,m2, o1,d1, o2,d2, xy)
#% _lop (mm (m1,m2), dd (:))
integer i, ix,iy, id
real f, fx,gx, fy,gy
do id= 1, size(dd) {

f = (xy(id,1)-o1)/d1; i=f; ix= 1+i; if(1>ix .or. ix>=m1) cycle; fx=f-i; gx= 1.-
fx

f = (xy(id,2)-o2)/d2; i=f; iy= 1+i; if(1>iy .or. iy>=m2) cycle; fy=f-i; gy= 1.-
fy

if(adj) {
mm(ix ,iy) += gx * gy * dd(id)
mm(ix+1,iy) += fx * gy * dd(id)
mm(ix ,iy+1) += gx * fy * dd(id)
mm(ix+1,iy+1) += fx * fy * dd(id)
}

else
dd(id) = dd(id) + gx * gy * mm(ix ,iy) +

fx * gy * mm(ix+1,iy) +
gx * fy * mm(ix ,iy+1) +
fx * fy * mm(ix+1,iy+1)

}
}

1.7.4 Treasure hunting at Galilee

Before I go diving, digging, or dreaming atGalilee, there are a few more things to attend to.
The original data is recorded at about 25-m intervals but the maps shown here are at 50 m,
so to find small treasure I should make maps at higher resolution. This aggravates the noise
problem. We see that all the Galilee maps contain glitches that are suspiciously nongeological
and nonarcheological. Ironically, the process of getting rid of the tracks in Figures 1.10 and
1.11 creates glitches at track ends. There would be no such glitches if the vessel switched on
the depth sounder in port in the morning and switched it off after return. The problem arises

1.7. ELIMINATING SHIP TRACKS IN GALILEE 23

when tracks start and stop in the middle of the lake. To handle the problem we should keep
track of individual tracks and, with the noise PEF (approximately (1,−1)), convolveinternally
within each track. In principle, the extra bookkeeping should not be a chore in a higher-level
computing language. Perhaps when I become more accustomed to F90, I will build a data
container that is a collection of tracks of unequal lengths and a filter program to deal with that
structure. Figure 1.12 shows not the tracks (there are too many), but the gaps between the end
of one track and the beginning of the next wherever that gap exceeds 100 m, four times the
nominal data-point separation.

Figure 1.12: The lines are the gaps
between successive vessel tracks, i.e.,
where the vessel turned off the depth
sounder. At the end of each track is a
potential glitch. noiz-seegap[ER]

Besides these processing defects, the defective data values really should be removed. The
survey equipment seemed to run reliably about 99% of the time but when it failed, it often
failed for multiple measurements. Even with a five-point running median (which reduces
resolution accordingly), we are left with numerous doubtful blips in the data. We also see a
few points and vessel tracks outside the lake (!); these problems suggest that the navigation
equipment is also subject to occasional failure and that a few tracks inside the lake may also
be mispositioned.

Rather than begin hand-editing the data, I suggest the following processing scheme: To
judge the quality of any particular data-point, we need to find from each of two other nearby
tracks the nearest data point. If the depth at our point is nearly the same depth ofeitherof the
two then we judge it to be good. We needtwo other tracks and not two points from a single
other track because bad points often come in bunches.

I plan to break the data analysis into tracks. A new track will be started wherever (xi −

xi−1)2
+ (yi − yi−1)2 exceeds a threshold. Additionally, a new track will be started whenever

the apparent water-bottom slope exceeds a threshold. After that, I will add a fourth column
to the (xi , yi ,zi) triplets, a weighting functionwi which will be set to zero in short tracks. As
you might imagine, this will involve a little extra clutter in the programs. The easy part is the
extra weighting function that comes along with the data. More awkward is that loops over data
space become two loops, one over tracks and one within a track.

268 CHAPTER 1. NOISY DATA

Index

bursts, 10
bursty noise, 13

cable ends, 15
Cauchy function, 9
constant-offset section, 15

deburst, 10
despike, 10, 11
dip moveout, 15
DMO, 15

fixbad module, 14

Galilee, 18, 22

Hoare’s algorithm, 3

index, 25
irls module, 9

L-0 norm, 2
L-1 norm, 2
L-2 norm, 2
L1 or L1, 6
L2 or L2, 6
lint2 operator module, 22

mean, 1
median, 1
median smoothing, 11
mode, 1, 2
module

fixbad , restore damaged data, 14
irls , weighting functions for iterative

reweighting, 9
pefest , estimate PEF in 1-D avoiding

bad data, 13
quantile , percentile, 4

weightsolver , iteratively reweighted
optimization, 8

noise spikes, 4
nonlinear optimization, 7

operator
lint2 , 2-D linear interpolation, 22
refine2 , refine 2-D mesh, 21

pefest module, 13
percentile, 2

quantile module, 4

refine2 operator module, 21
regridding, 21
row normalized PEF, 13
running median, 4

Schwab, 15
spikes, 10

weighted mean, 4
weightsolver module, 8

269

270 INDEX

